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We develop a two-dimensional adaptive pseudo-spectral procedure which is capable of 
improving the approximation of functions which are rapidly varying in two dimensions. The 
method is based on introducing two-dimensional coordinate transformations chosen to mini- 
mize certain functionals of the solution to be approximated. The method is illustrated by 
numerical computation of the solutions to a system of reaction diffusion equations modeling 
the gasless combustion of a solid fuel. Spatio-temporal patterns are computed as a parameter 
p, related to the activation energy, is increased above a critical value &. The spatial patterns 
are characterized by a very rapid variation in the direction of the axis of the cylinder, together 
with a standing wave pattern in the direction of the azimuthal angle JI. For small values of 
p-~~ the solutions exhibit a nearly sinusoidal dependence in both time and 4. As p is 
increased further relaxation oscillations in both time and $ occur. Beyond a critical value of 
p stable time-periodic solutions are no longer found and the solution exhibits a quasi-periodic 
time dependence. c 1990 Academic Press, Inc. 

In this paper we present an adaptive pseudo-spectral procedure for two-dimen- 
sional problems. The method is an extension of our earlier method [ 1,7] which 
was developed for problems which are either posed in one dimension or can be 
treated by a Cartesian product adaptive procedure. The method relies on the intro- 
duction of two-dimensional (non-Cartesian product) coordinate transformations 
which are obtained from minimizing certain functionals monitoring the spectral 
interpolation error. The method will be illustrated by the calculation of pulsating 
cellular flames for problems in solid fuel combustion. 

The Chebyshev pseudo-spectral method has found applications in a wide range 
of problems in the general area of fluid dynamics (see [S] and the references con- 
tained therein). It is known that pseudo-spectral methods are well suited for the 
approximation of functions which are smooth and do not exhibit localized regions 
of rapid variation [8, 121. For functions exhibiting regions of rapid variation, 
oscillations can develop which can lead to inaccuracies and nonlinear instabilities 
[ 111. Filtering and post-processing of the solution have been used with the 
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Chebyshev pseudo-spectral method in the calculation of weak solutions of conser- 
vation laws [ll 1. These methods have been applied to problems in two dimensions; 
however, their applicability to problems with strongly (e.g., exponentially) non- 
linear reaction terms such as occur in many combustion problems, has not been 
shown. 

In many combustion problems diffusion is present so that shocks or weak solu- 
tions generally do not occur. It is typical of combustion problems, however, that 
the activation energies are large so that the chemical reaction terms are important 
only in a narrow region called the reaction zone. Ahead of the reaction zone the 
temperature is too cold to sustain the reaction while beyond the reaction zone the 
fuel has been consumed so that the reaction can not occur. As a result the solutions 
of typical combustion problems, while smooth, generally have localized regions where 
the variation is very rapid. In addition, the reaction terms often depend exponen- 
tially on the pointwise value of the solution, which makes filtering type procedures 
unattractive. An alternative is to introduce coordinate transformations so that in 
the transformed coordinate the error in the pseudo-spectral approximation is 
reduced. In effect, the transformations tend to expand the reaction zone, thus 
resulting in functions with a more gradual spatial variation. Generally the location 
of the reaction zone is not known in advance and therefore appropriate coordinate 
transformations must be obtained adaptively from the computed solution. 

In [l, 7, 133 an adaptive pseudo-spectral method was introduced. The method 
was effective in improving the calculation of a variety of problems in both gaseous 
and solid fuel combustion. The method was based on introducing a family of coor- 
dinate transformations depending on a small number of parameters. A particular 
coordinate system was chosen dynamically by minimizing a certain integral func- 
tional which was an upper bound for the spectral interpolation error in some norm. 
In [l, 133 the second Sobolev norm of some component of the solution was mini- 
mized. This provided a bound on the L2 norm of the spectral interpolation error. 
The method was illustrated by examples from solid fuel combustion and shown to 
be effective in improving the resolution of rapidly varying functions. 

In [7] a different functional was considered. This functional was derived directly 
from the Chebyshev expansion of an arbitrary function and was shown to be an 
upper bound for the maximum norm of the spectral interpolation error. The use of 
this functional was illustrated by numerical computations of pulsating axisymmetric 
solutions for certain problems of gaseous combustion. 

For planar and/or axisymmetric problems there is no spatial structure transverse 
to the reaction zone. In this case the one-dimensional transformations considered in 
[ 1, 71 were sufficient to provide adequate resolution of the reaction zone. There are 
however, many problems where there is spatial structure transverse to the reaction 
zone. In these problems cells form, leading to a periodic variation in the location 
of the reaction zone as the transverse coordinate is varied. The transverse coor- 
dinate may be an angular coordinate in either a cylindrical or polar coordinate 
system. Cellular solutions have been found for problems in solid and gaseous fuel 
combustion. These cellular solutions can either be time independent (stationary 
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cells), can propagate with a uniform velocity, or they can have a temporal structure. 
In the latter case the temporal structure is often a periodic (in time) pulsation and 
the solutions are referred to as pulsating cellular flames. In this paper we illustrate 
the numerical method by the computation of pulsating cellular flames for problems 
in solid fuel combustion. Analysis of these solutions can be found in [ 10, 191. Typi- 
cally in pulsating cellular flames, the location of the reaction zone varies in both 
space and time. The spatio-temporal variation can be described as a standing wave 
with fixed nodes or a traveling wave propagating along the reaction zone, (which 
itself may be propagating into the fresh fuel mixture). 

The numerical method presented in [ 1,7] is not directly applicable to cellular 
flames because of the use of one-dimensional mappings. The mappings, in effect, are 
designed to spread out regions of rapid variation normal to the reaction zone. 
When the location of the reaction zone depends on an angular coordinate, no one- 
dimensional mapping will be optimal. In addition there is no natural single func- 
tional which monitors the spectral interpolation error for each angular direction. In 
[S, 71 the one-dimensional procedure was used to compute stationary cellular 
flames for a model of gaseous combustion in polar coordinates. In this case the 
one-dimensional mapping was chosen by minimizing the sum of the computed 
functionals in each direction. 

The results in [5] demonstrated that although the use of a one-dimensional 
transformation can be effective, this method becomes less effective for large 
amplitude cells where there is a significant angular variation in the location of the 
reaction zone. In this case sufficiently many collocation points must be used to ade- 
quately resolve the reaction zone in each angular direction. The use of Cartesian 
product transformations will not generally account for an angular variation in the 
location of the reaction zone. Non-product adaptive pseudo-spectral procedure 
have not been previously developed. Such a procedure is presented here. 

One approach is to use a general two-dimensional transformation. However, this 
is difficult to implement in the context of the Chebyshev pseudo-spectral method. 
In our adaptive procedure, we work with explicitly defined mapping functions and 
for efficiency we restrict our attention to mappings which are explicitly invertible. 
In addition, the most general two-dimensional mappings may not be required for 
typical combustion problems where the major angular variation is in the location 
of the reaction zone, whereas the very sharp gradients due to the reaction terms 
occur primarily in the direction normal to the reaction zone. Often this direction 
has only a weak dependence on the angular variable. 

In the method presented here we employ a family of one-dimensional transforma- 
tions in the direction normal to the reaction zone (axial direction for the cylindrical 
geometry considered in the examples). These transformations depend on a small 
number of parameters which are obtained by minimizing an appropriate functional 
of the solution. The minimization is carried out in each angular direction and the 
parameters of the transformation determined as a function of the angular variable. 
This method has been implemented and used to study pulsating cellular solutions 
in gasless solid fuel combustion. 
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In this type of combustion, the chemical reaction occurs directly in the solid 
without the formation of a gaseous phase (although a liquid phase can occur). 
This method is currently being investigated as a new and more efficient method 
of synthesizing certain ceramic and metallic alloys. The synthesis occurs by the 
propagation of a high temperature combustion wave through the sample which 
converts reactants into products. This process is referred to as the SHS process 
(for “self-propagating high temperature synthesis”) [ 15,223. 

It has been observed that the combustion wave does not always propagate with 
a uniform velocity. Planar pulsating modes of combustion have been observed, 
where the planar combustion wave propagates with an oscillatory velocity. These 
modes are identified by a periodic planar striation in the sample. Nonplanar modes 
of combustion have also been observed. In spin combustion, hot spots (luminous 
points) propagate in a helical fashion around the sample. Multiple point combustion 
is characterized by the appearance, disappearance, and reappearance of one or more 
luminous points on the surface of the sample. In addition, for certain mixtures, 
combustion occurs only on the surface while for other mixtures the burning occurs 
throughout the entire sample. Finally, it has been observed that often the 
temperature is sufficiently high so that one or more of the reactants melts prior to 
reaction [l&17, 22, 231. 

Analytical models, based on an infinite activation energy model for the reaction 
term, have been extensively investigated [ 18-21,251. Planar pulsating combustion 
has been identified as due to a Hopf bifurcation occurring when a parameter p, 
related to the non-dimensional activation energy and the ratio of the temperature 
of the burned and unburned material, exceeds a certain value [21]. This problem 
has also been studied numerically [ 1, 3,4]. Numerical computations have found a 
period doubling secondary bifurcation occurring when p is increased. In [4] it was 
shown that upon further increasing p the solution returned to single periodicity. In 
[3] it was shown that multiple windows of period doubled behavior could exist as 
p was increased. Beyond a certain point it was found that periodic solutions could 
no longer be computed and the solution exhibited intermittency, with long laminar 
regions interrupted by occasional bursts until apparently fully chaotic solutions 
were computed. 

Spin combustion and multiple point combustion have been identified with 
traveling wave and standing wave solutions emanating from Hopf bifurcations 
corresponding to non-planar solutions [lo, 193. Both traveling and standing wave 
solution branches can be shown to exist, but the stability of each branch depends 
on the details of the particular problem being analyzed. In addition, quasi-periodic 
modes of propagation have been identified as due to degenerate and secondary 
bifurcation points [20]. Numerical computations of an example of spin combustion 
were presented in [22]; however, the behavior of the solution along such pulsating 
cellular branches has not been studied. Numerical examples of both multiple point 
combustion and spin combustion have been presented in [2,6]. These results are 
extended here as an application of the numerical method. Specifically, we will 
demonstrate the evolution of the increasingly relaxational character of the solution 
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along a standing wave solution branch. The computations will also demonstrate a 
transition to a branch of apparently quasi-periodic solutions. 

The remainder of this paper is organized as follows. In Section 2 we describe the 
two-dimensional pseudo-spectral adaptive procedure used in our calculations. In 
Section 3 we describe a model of surface combustion which accounts for the effects 
of melting and which is used in our calculations. In Section 4 we describe the results 
of computations employing the method. 

2. NUMERICAL METHOD 

We consider problems which exhibit non-periodic behavior in one direction (x) 
and are periodic in the transverse direction (y). The numerical method is based on 
the Chebyshev pseudo-spectral method in the x direction and the Fourier pseudo- 
spectral method in the y direction. Extensive discussions of these methods can be 
found in [8, 121. We assume familiarity with the Fourier pseudo-spectral method. 
Since the Chebyshev pseudo-spectral method is central to the adaptive procedure 
in our problems, we give a brief description. 

Consider the heat equation 

2.4, = u XX (2.1) 

In the Chebyshev pseudo-spectral method the equation is solved at a set of J 
collocation points xj (j= 1, . . . . J). The solution at xi is denoted by uj. The usual 
collocation points are the Gauss-Lobatto points, i.e., the extrema of the Jth 
Chebyshev polynomial TJ = cos(J cos - ’ x), 

xj = cos jlr/J. (2.2) 

For the purposes of computing the spatial derivatives the solution u to (2.1) is 
approximated by a sum of Chebyshev polynomials 

uJ= i ujTj(x). (2.3) 
j=O 

The expansion coefficients uj in (2.3) are obtained from collocation; i.e., we require 
that (2.3) satisfy (2.1) at the points (2.2). Spatial derivatives are computed by 
explicitly differentiating the finite series (2.3) and evaluating the result at xi. The 
function values are then found from integrating the resulting set of ordinary dif- 
ferential equations in time. Further details of the method can be found in [8, 121. 

It is known that oscillations can arise in applying this method to functions 
exhibiting rapid spatial variation over narrow regions [ 111. In certain circumstan- 
ces these oscillations can be removed by suitable post-processing of the solution. 
However, in combustion problems the solution is influenced by exponentially non- 
linear reaction terms. These reaction terms are sensitive to the pointwise value of 
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the solution. Oscillations can result in an incorrect description of the dynamics and 
sometimes lead to instabilities in the computation. In combustion problems of the 
type considered here the solutions are in fact smooth in all regions of space and the 
oscillations can be removed by increasing the number of collocation points. 

A more etlicient approach is to introduce an adaptive procedure to enhance the 
accuracy of the computation. Such a procedure was introduced in [l] and also in 
[13]. In this procedure a family of coordinate transformations depending on a 
small number of parameters 

x = qb, a) (2.4) 

is introduced. Here a denotes a parameter vector which is to be determined. Equa- 
tion (2.4) describes a change of variables which can be applied to equation (2.1). 
The Chebyshev pseudo-spectral method can then be applied to the transformed 
equation 

The parameters a are chosen so that in the new coordinte system some bound on 
the spectral interpolation error is minimized. These bounds are typically functionals 
of the solution involving integrals of derivatives of the solution. Two examples 
which have been considered are 

(2.6) 

Numerical examples presented in [7] demonstrated that (2.7) is a more effective 
estimator of the spectral interpolation error, particularly for problems where the 
reaction zone occurs in the interior of the domain. However, for problems where 
the region of rapid variation occurs near the boundary, as is the case here, we have 
found that the use of either (2.6) or (2.7) leads to similar results. The computations 
presented here were obtained by minimizing (2.6). 

The effect of the adaptive procedure is to change the basis functions in the 
original coordinate (x), so as to better resolve the solution. In the computations, 
the transformed equation (2.5) is solved using the Chebyshev pseudo-spectral 
method. The functionals are computed in the general coordinate system determined 
from (2.4). The parameter vector a is then chosen as a minimizer of the resulting 
functional. The solution is then interpolated to the newly chosen coordinate system 
by computing the global Chebyshev interpolant and the calculation then continued 
until a new search for a coordinate system is triggered. In [ 1,4] a planar version 

581/91/l-13 
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of the solid combustion problem considered below was solved and the one- 
parameter family of coordinate transformations 

q(s, a)=itan’ atan a(.~--1) +l 
( > 

(2.8) 

was found to be effective in computing very rapidly varying solutions. 
This method is effective in adaptively stretching the reaction zone for planar 

problems. We now consider the two-dimensional model problem 

u l = u,, + uy~v. (2.9) 

In the applications presented below y will be an angular variable and the location 
of the reaction zone will have an angular dependence. The method described above 
can enhance the resolution of the reaction zone for one angle but may not provide 
adequate resolution of the reaction zone at other angles. In addition, there is no 
natural way to select a preferred angle to apply the procedure described above or 
to create appropriate functionals. 

Since regions of rapid variation still occur primarily in the x direction we now 
consider the two-dimensional family of mappings 

x = ds, U(T)) 

y=T 
(2.10) 

applied to (2.9). The mappings in this family have the flexibility to stretch the reac- 
tion zone (or to alter the basis functions) differently for different values y. The map- 
pings have the additional advantage of being explicitly invertible provided this is 
true for the one-dimensional mapping, The Jacobian of the mapping can also be 
explicitly computed. Finally the functionals (2.6) and (2.7) provide mathematically 
sound error bounds to be minimized for each fixed value of y. 

In our method, (2.6) is computed for each value of the angular coordinate y. For 
each such value of y, (2.6) is minimized and the minimizer computed. The function 
a(y) is then computed via Fourier interpolation. Typically the resulting function is 
filtered to remove high frequency modes which can enter due to the minimization. 
The equation is then transformed by the mapping (2.10), to 

tit = (wx), sx + (%Sy)s sy + %S~.” + 4, + %SyY,. (2.11) 

In (2.11) the first two terms are kept in conservation form which is the way they 
are treated in our computer program. In deriving (2.11) we have made use of spe- 
cial properties of the mapping (2.10). The terms s,, s,, and syr can be evaluated as 
functions of s and t by differentiating (2.10). We introduce the notation q, = aq/as, 
q2 = aq/az with a similar notation for higher derivatives. It can then be easily seen 
that 

1 
sx=-, q’ s sy= --) 

-q12q2 + q1q22 

91 q2 
ys = 2 

q2 
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We note that the computation of these terms involves computing da/&. This is 
done using a Fourier pseudo-spectral method. The transformed equation (2.10) is 
then solved using a Chebyshev pseudo-spectral method in s and a Fourier pseudo- 
spectral method in t. 

The computational overhead associated with the minimization is generally not 
large. The transformed equation (2.11) differs from the model equation (2.9) in two 
important respects: there is an angle dependent coefficient multiplying the second 
s-derivative term and mixed derivatives now appear in the equation. These addi- 
tional terms can effect the efficiency of time differencing schemes which we now 
discuss. 

It is typical in pulsating combustion problems that the solution exhibits regions 
of very rapid temporal oscillations. These solutions take on the character of relaxa- 
tion oscillations, examples of which are presented in [ 1, 3,4]. In order to 
accurately compute these solutions, small timesteps are generally required. Conse- 
quently only the explicit timestep restriction due to the second s-derivative terms 
(the first two terms on the right-hand side of (2.11)) is limiting and we use a semi- 
implicit integration method in time. In our computations for the model described 
below, the analogues of the first two terms are treated implicitly and the other 
terms are treated explicitly. 

The transformed equation (2.11) has variable coefficients multiplying these terms 
while in the untransformed equation (2.9), the coefficients are independent of t and 
y, so that the implicit equations can be solved by factoring a constant matrix. In 
(2.11) this would require a different matrix to be factored for each value of r (i.e., 
each angle). In order to reduce the computer storage requirements we use an 
iterative method to solve the linear equations resulting from the semi-implicit time 
differencing. The mixed derivative term in (2.11) requires some additional computa- 
tion and could force an additional timestep restriction. 

Therefore the major computational costs associated with the two-dimensional 
adaptive procedure are (i) the requirement for an iterative solution method to solve 
the linear equations obtained from the implicit time differencing, (ii) the computa- 
tion of the mixed derivatives, and (iii) a possible reduction of the timestep due 
to the mixed derivative terms. For any particular problem these costs must be 
balanced against the reduction in collocation points that can be obtained by 
transforming the coordinate system differently for each value of the transverse 
coordinate. In the applications considered here the problem is transformed to a 
nonseparable coordinate system, so that both variable coefficients and mixed 
derivatives are already present (see below). In this case the added computational 
expense of the two-dimensional adaptive procedure is minimal. Similar considera- 
tions hold for many other problems in fluid dynamics, combustion, and other areas 
of science and engineering and the numerical method introduced here should 
enhance the efficiency of pseudo-spectral computations for these problems. 

Cellular solutions also occur in problems of gaseous combustion [S, 71. In the 
models that we have solved previously there are constant diffusion coefficients. In 
this case the efficiency of the two-dimensional procedure depends on the amplitude 
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of the cells. For moderate amplitude cells such as those considered in [S, 71 a one- 
dimensional adaptive procedure, together with the high order accuracy of the 
Chebychev pseudo-spectral method is sufficient to adequately resolve the solution. 
For larger amplitude cells the situation is analogous to the solid combustion 
problem considered here and, in this case, the benefits of reducing the number of 
collocation points would seem to outweigh the cost of the iterative solution of the 
semi-implicit scheme. 

Many of the features of this method are well suited to parallel computer architec- 
tures. For example, the iterative solution to the system of linear equations obtained 
from the temporal differencing can be parallelized in the transverse direction. We 
have found that the convergence rate of the iterative method is relatively insensitive 
to the transverse variable. In our current implementation of the method we employ 
a fixed number of iterations (generally one or two) for each angular variable. Thus 
the computational cost of the solution of the linear equations is independent of the 
transverse variable, providing potentially optimal load balancing among multiple 
processors. Another facet of the method which is potentially parallelizable is the 
minimization of the functional (either (2.6) or (2.7)). 

3. SOLID COMBUSTION MODEL 

We employ a model similar to the model employed in [21]. The model accounts 
for melting of a delicent component as described in [ 181. We consider irreversible, 
one-step Arrhenius kinetics and assume that there is no diffusion of mass in either 
the solid or liquid phase. We denote by N a dimensional quantity. The equations 
of the model are given by 

J $=lv2T+(x(8+g))dYexp(-E/R1) 

aP 
al=- Lx 0 

’ ABexp( -E/R?+), 

where 

Here F denotes the temperature and y denotes the mass fraction of the deficient 
component of the reaction. The model assumes a phase change whereby the 
deficient component melts before reacting. The melting is assumed to occur at the 
surface 
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where 4 is to be determined. Upon melting, the heat of fusion 7 is absorbed by the 
reactant, but is then released during the reaction process, as the final product is 
assumed to be in the solid phase. The heat of reaction fl, is thus augmented by f 
beyond the melting surface. We also assume that the reaction rate is increased by 
a factor tl > 1 due to the increased surface to surface contact in the liquid phase. 
The other constants of the model are the thermal diffusivity x, the activation energy 
,!?, the gas constant i?, and the rate constant A”. Melting is assumed to occur instan- 
taneously at the melting temperature T,,,, which is taken to be independent of the 
curvature of the melting surface. Across this surface the heat flux jumps by an 
amount proportional to y, since only the reactant, and not the product, melts. Thus 

where the unit normal to the melting surface, n, is given by 

r,, is the normal velocity of the surface given by 

(3.1) 

and, for any quantity g, 

denotes the jump in the quantity g across the surface. In addition, F and y satisfy 
the boundary conditions 

P= Fu, T= T” as J?~+ --co 

8=0, F= To as Z3+co, 

where yu and ?;, denote the unburned mass fraction and temperature, respectively, 
and Fa denotes the adiabatic burned temperature. We note that the condition 
y + 0 (2, + cc ) is a consequence of the model and is not imposed as a boundary 
condition either in the analysis or in the computations. By considering the solution 
corresponding to a planar front moving with constant velocity from right to left, it 
is easy to show that 

We consider the problem for the case that burning occurs only on the surface of a 
cylinder Z: + 52: = i?f. The problem is nondimensionalized as follows: Let 
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where 0 is the adiabatic speed of a uniformly propagating planar reaction front. In 
addition, we introduce the moving coordinate system 

z = x3 - 4th t), 

so that melting occurs at z = 0. The independent variables are z and the azimuthal 
angle $. The equations of the model are 

e,=(,e,+V2e+nY(a,l:y))exp(~~~~~~~f)) (32) 
Y,=b,Y,-nr 

N(l -c)(e- 1) 

> o+(l-a) ’ 
where 

A=A (l+y) 
( a(1 -M) 

+0(i)), ,=(l-~)ed(em-l), d=N(l-a), 

(3.3) 

We note that the Laplacian is no longer separable in these coordinates and that 
mixed derivatives occur. The solid flame eigenvalue n serves to fix the space and 
time scales of the problem. The first correction to /i is derived in [18] and is 
employed in our model. 

At the melting surface z = 0, the heat of fusion is absorbed by the reactant. Thus 

#,= -l -le,,(l+y) Y Y(O) 
and the boundary conditions are 

ett, 4 ICI)--+ l(O) as z+co(-co) 

Y(t, z, II/)+ 1 as z-+-co 

w, 0, b+) = 8, 

46 z, $I= Ml, z, II/ + 2n), 

where h denotes T, Y, or 4. 

(3.5a) 

(3.5b) 

(3.5c) 

(3.5d) 

In the limit of infinite activation energy the reaction zone shrinks to a surface, the 
solid flame front, across which the solution must satisfy certain jump conditions. A 
linear stability analysis of this model appeared in [18]. It was shown that solution 
branches depends on a parameter p = A/2( 1 - M). In our computations the activa- 
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tion energy is finite and thus there is a non-zero reaction even as z + -co. Since 
in practice no significant reaction occurs ahead of the melting surface, the model 
described above is modified by multiplying the reaction term by a cutoff function 

g(z) = 1 zaz, 

g(z) = 0 z<z,, 

where z, = - 3 in the present calculations. In addition, the boundary conditions 
(3.4a), (3.4b) are imposed at finite points zL, z, with 

zL= -z,= -12. 

This boundary is located sufficiently far from the reaction zone so that no sensitivity 
to the artificial boundary is observed. 

The presence of the melting surface leads to a natural multiple domain formula- 
tion for the problem. The solution is advanced separately on each of the domains 
[zL, 0] and [0, zR]. The interface is the melting surface z = 0. Each domain is map- 
ped onto the interval [ - 1, l] and the solution updated using the pseudo-spectral 
method. The location of the melting surface, d($), which enters into the coefficients 
as indicated in (3.3), is then updated using (3.4). The temporal difference scheme 
described below is designed to be as centered as possible so as to obtain the 
smallest possible temporal truncation error. 

We now discuss certain aspects of the numerical method used to solve the system 
(3.2). Since the reaction zone occurs beyond the melting surface, i.e., z > 0, we intro- 
duce a mapping only in this region. The region of most rapid variation occurs 
very close to z = 0. The explicit mapping function is given in (2.8). The degree of 
stretching near the melting surface, z =O, depends on the parameter a. In the 
computations, c( is chosen for each value of @ by the method described in Section 2. 
The axial derivative terms are computed using the Chebyshev pseudo-spectral 
method and the angular derivative terms are computed using a Fourier pseudo- 
spectral method. 

The solution is advanced in time using a semi-implicit scheme. Terms involving 
the second derivative of the transformed axial coordinate are advanced implicitly 
with a backwards Euler predictor and a Crank-Nicolson corrector. All of the other 
terms are advanced using the modified Euler scheme. Specifically, assuming the 
model equation 

U, = A(t) U,, + B(f) U, + U,,, 

the solution is advanced from time level n to time level n + 1 as follows: 

#lJn+ l/2 _ #rJ” 

0.5 At 
=A(t”) U;,+“2+B(t”) iJ:+ Uzti 

U ?l+1_TJll 

At 
~A(t”+~/~)(u;z+~+ U;J+B(t”+‘/2) u:+1/2- u;;“*. 
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FIG. 1. (a) 0( f, z = 0.4, t,h) for p = 4.0695; __ *=o;... *=r/2; --- $=n; ~-- $ = tn. 
(b)@(t,z=0.4, $) for p=4.1613; - ~=0;...*=~[/2;--~*=~;-------- tJl=;?l. 



2D ADAPTIVEPSEUDO-SPECTRAL METHOD 187 

i” 
i 
i 
i 
j 
h 

I 
i 
i 
i 
\ 

P \; \ 

n 

I 

i 
i 
i 
i 
i 
b 

Ii 
ii 
ii 
i i 
1 i 

$1 
6 1 1 I I I I I I I I I I I I I 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 6.0 9.0 10.0 11.0 12.0 13.0 14.0 16.0 

T 

FIG. 1. (c)0(& z=O.4, $) for p=4.2071;- *=o;...$=llp--*=n; --- $ = ;?-c. 

The functions #t(t, $) and d(t, II/) which appear in the coefficients (see (3.2) and 
(3.3)) are recomputed after the predictor step, i.e., at level n + l/2 and then used in 
the corrector step. In the planar case the linear system associated with the implicit 
scheme is independent of time and the solution is updated by explicitly factoring the 
matrix associated with this linear system. In the present case the coefficients depend 
on both t and the angle tj so that such a procedure is not practical. The implicit 
equations are solved iteratively using the minimum residual Richardson method as 
described in [9]. The system is preconditioned by using the finite difference dis- 
cretization and solving the resulting D-i-diagonal problem (see, for example, [8]). 
Typically the iteration converges to a relative residual of less than lop5 in less than 
five iterations. We have found that stability can also be achieved by iterating for a 
fixed number of iterations. In our present implementation we employ one iteration 
for the predictor step in each domain and one iteration for the corrector step in the 
domain ahead of the melting surface. We employ two iterations for the corrector 
step in the domain behind the melting surface. 

4. NUMERICAL RESULTS 

We illustrate the method by exhibiting calculations of the solution along a 
standing wave branch. The numerical results will show a sinusoidal solution 
progressively sharpen into relaxation oscillations as the parameter p is increased. 
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FIG. 3. (a) Location of melting surface at various times, p = 4.0695. (b) Location of melting surface 
t various times, p =4.2071. 
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Beyond a certain point we find a transition to a branch of solutions which have a 
quasi-periodic time dependence. For the computations presented here the following 
parameters were held fixed: N= 50, c1= 2.3, y = 0.37, 8, = 0.8. The bifurcation 
parameter p was increased by decreasing the temperature ratio (T. 

In Figs. la-c we illustrate the formation of relaxation oscillations by plotting 
e(t, z = 0.4, $) as a function of time for four different angles + = 0, n/2, n, 37c/2. The 
value of p is increased from 4.0695 (Fig. la) to 4.2071 (Fig. lc). We observe that the 
solutions at tj = 0 and R are graphically indistinguishable. These angles correspond 
to the nulls of the standing wave. A small half period oscillation can be seen which 
grows as p is increased. This oscillation, which is of much smaller amplitude than 
at the other angles, corresponds to a second-order term, as can be seen from the 
perturbation analysis of the solution in the vicinity of the standing wave bifurcation 
(see [ 193). 

In Figs. 2a-b we plot the normal velocity V, (see (3.1)) as a function of time at 
the same angles. The values of ,U are 4.0695 (Fig. 2a) and 4.2071 (Fig. 2b). In all 
cases the solution was obtained with a grid of 32 angular points and 61 axial points 
on either side of the melting surface. The solution was validated by computing on 
coarser grids. In both Figs. la-c and 2a-b we observe the progressive sharpening 
of the solution as p is increased, indicating a transition from nearly sinusoidal 
behavior to relaxation oscillations. This sharpening of the pulsation in time is 
accompanied by an increase in the temperature at the spike and by a progressive 
sharpening of the spatial profile of the temperature at the time of the spike. In turn 

T = 467.770 

FIG.~. B(t,z, ((I) at a fixed time, p= 4.0695. 
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FIG. 5. (a) @(r, z, $) at t = t,, p = 4.2071. (b) e(r, z, $) at I = t2, p = 4.2071. 
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' T= 78.030 

FIG. 5. (c)0(&z, +) at t=f,, p=4.2071. 

there is a stronger angular dependence of the solution, requiring a greater degree 
of angular variability in the mapping function which is chosen as described above. 

The increase in the angular variability of the solution is illustrated in Figs. 3a, b, 
where the location of the melting surface is plotted against the azimuthal angle $ 
for different values of t for p = 4.0695 (Fig. 3a) and for p = 4.2071 (Fig. 3b). In order 
to illustrate the sharpening of the spatial profiles we exhibit perspective plots of the 
temperature field for different values of p and for different times. In Fig. 4 we 
illustrate the temperature field for the case p =4.0695 at a time close to a 
temperature spike at $ = 7r/2. We observe both the nearly sinusoidal angular 
dependence and the relatively gradual variation with z. In Figs. 5a-c we plot the 
temperature field for the case p = 4.2071. It is apparent from the figures that both 
the temperature field and the location of the reaction zone have a stronger angular 
variational and there is a much more rapid axial variation in 8. 

Upon further increasing p we find that periodic solutions can no longer be com- 
puted and the solution undergoes a transition to apparently quasi-periodic behavior 
characterized by an oscillation comparable in frequency to that observed for lower 
values of p, modulated by a lower frequency envelope. The variation in the 
amplitude of this envelope increases as p is increased and appears to vanish as p 
is decreased to a specific value, leading us to conjecture that the transition to quasi- 
periodicity occurs via bifurcation. In Fig. 6a we plot 6( t, z = 0.3, $) as a function of 
t for four different angles for the case p = 4.3217. The solution is exhibited over a 
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mu = 4.39036 
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\ 
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FIG. 6. (c)fl(t,z=0.3, 71/2) for p=4.3904. 

long time interval so that the nature of the envelope is apparent. To illustrate the 
increase in the variation of the envelope with increasing p, in Fig. 6b we plot the 
temperature at one angle for the case p = 4.3217. In Fig. 6c we plot the same quan- 
tity for the case p = 4.3904. The increase in the variation of the amplitude of the 
envelope is apparent. 

Perspective plots of the temperature are shown in Fig. 7a (,n = 4.3217) and 
Fig. 7b (p = 4.3904). These figures correspond to a value of t close to a temperature 
spike. The figures illustrate the rapid growth in the temperature spike and the 
increasing angular localization of the spike. The computations described above 
were obtained at the NMFECC and the NCSA. 

In previous calculations with one-dimensional models it was found that the singly 
periodic solution underwent a transition to a doubly periodic behavior via a 
secondary bifurcation. This was shown both for a one-dimensional version of the 
melting model [ 1,4, 51 and for a model which did not allow for melting [24]. In 
the melting model we observed a transition to chaotic behavior via intermittency, 
while in the nonmelting model we observed a transition to chaotic behavior via a 
period doubling sequence. In calculations of pulsating solutions of gaseous combustion 
models for Lewis numbers greater than one we also obtained a period doubling 
sequence. Quasi-periodic modes of propagation have been predicted for higher 
dimensional problems for parameter values near degenerate Hopf bifurcation 
points. Whether the current solution is due to such an effect is not clear; however, 
the quasi-periodic behavior found in the non-axisymmetric problem appears to be 
a truly two-dimensional effect which is not present in one-dimensional models. 
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T= 130.719 

FIG. 7. (a) 0(t, z, $) at a fixed time; p = 4.3217. (b) e(t, z, $) at a fixed time; p = 4.3904. 
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